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Abstract 

The structure of the low-symmetry phase near the 
transition point depends on the number of arbitrary 
parameters, which is smaller than that determined by 
the space group GD of this phase. Such a feature 
gives rise to some nontrivial structural effects in the 
vicinity of the transition point: there are numerical 
relationships among the displacements of the atoms 
belonging to different orbits of the Go group. In 
some cases, atoms may be displaced in a direction 
not singled out by symmetry in any of the 230 space 
groups. These effects are revealed by group- 
theoretical methods and the Landau concept of one 
irreducible representation. 

1. Group-theoretical methods for studying the 
structure of low-symmetry phases 

The method of the complete condensate of order 
parameters (hereafter referred to as the COP 
method) has already been proposed for obtaining 
the structure of low-symmetry phases (Sakhnenko, 
Talanov & Chechin, 1986; Chechin, Ivanova & 
Saknenko, 1989). Let G be the space group of the 
original (high-symmetry) phase and Go that of the 
low-symmetry phase that arises from the continuous 
structural transition G~Go (GoCG). The COP 
method allows one to obtain, for the given phase 
transition, the explicit form of the density function 
that describes the Go phase structure in the Landau 
theory (Landau & Lifshitz, 1980). 

The change of the density function 8p(r) for the 
transition G~Go can be written as a sum of the 
contributions Aj that correspond to the different 
irreducible representations (IRs) Fj of dimension nj 
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of the original group G: 
P P 

6p(r)= Z Aj= Y. [Cj,~j(r)], (1.1) 
j=o j=o 

where p is the total number of these representations. 
Each of the contributions Aj is a formal scalar prod- 
uct of the stationary (invariant) vector Cj = (C), C~, 
... , C~J), which is a multicomponent order param- 
eter, and the vector ~ j =  [~o)(r), ~o~(r), . . . ,  ~o)'. J (r)], 
which determines a set of the basis functions ~0)(r) of 
the I R Fj. The stationary vector may be found from 
the equation 

(Fj*GD)Cj = Cj, (1.2) 

where Fj*GD is the restriction* of the IR Fj of the 
group G to its subgroup GD. Thus, the vector Cj is 
the common eigenvector with the eigenvalue of unity 
of those matrices of the IR Fj that correspond to all 
g EGo. Being the general solution to a system of 
homogeneous linear equations, the stationary vector 
depends on a certain number of arbitrary param- 
eters, which we denote a, b, c . . . .  ; hence, it singles 
out a certain subspace in the space of the representa- 
tion, whose dimension equals the number of these 
arbitrary parameters. The general algorithm for con- 
structing all the stationary vectors for the Fj of 
different IRs corresponding to a given Go phase, 
which constitute the complete condensate of order 
parameters, is given by Sakhnenko, Talanov & Che- 
chin (1986) and Chechin, Ivanova & Sakhnenko 
(1989). The basis functions %(0 are not only 
determined by the IR Fj but also depend on the 
transition type (ordering, displacement etc.) and on 

* The set of matrices of the IR F i of group G corresponding to 
the elements of its subgroup Gt, only. 

Acta Crystallographica Section A 
ISSN 0108-7673 ©1993 



G. M. CHECHIN, E. A. IPATOVA AND V. P. SAKHNENKO 825 

the distribution of the crystal's atoms in the original 
phase over the orbits of the group G. These functions 
may be constructed either by the standard method of 
projection operators (see, for example, Izyumov, 
Naish & Syromyatnikov, 1979) or by the 'direct' 
method described by Sakhnenko, Talanov, Chechin 
& Ulyanova (1983). The knowledge of the stationary 
vector Cj and of the basis functions of the IR Fj fully 
determines the contribution Aj by this representation 
to the function 8p(r). Thus, the COP method allows 
one to construct the 6p(r) function for a given 
low-symmetry phase and, consequently, to describe 
its structure. 

Another group-theoretical method for obtaining 
the low-symmetry phase structure has been suggested 
by Chechin (1989) (see also Ipatova, Krivtsova & 
Chechin, 1989 and Chechin & Krivtsova, 1989, 
1990). The atoms of the crystal occupy, in the origi- 
nal phase, a certain set of orbits (regular systems of 
points) of the space group G. All sites of each orbit 
of the group G are equivalent, being linked by 
certain symmetry operations g ~  G. However, owing 
to the symmetry lowering occurring because of the 
phase transition G--'Gn, a given orbit R of the group 
G may split into a certain set of independent orbits 
R~ of its subgroup Go. Every R~ is characterized by 
its stabilizer S~, (i.e. a group of site symmetry), which 
is a subgroup of the stabilizer S of the original orbit 
R.*  

In practice, the splitting of the orbit R may be 
performed in the following manner. Take an arbi- 
trary point r~ ~ R  and act on it with all elements of 
the group Go. The set of the different points 
obtained forms the first orbit, R l ,  and those 
elements of the symmetry under whose action the 
point r~ does not change its position enter into the 
stabilizer S]9. Cross all the points of the set R]9 off 
the points of the orbit R and act upon the first of the 
remaining points with all elements of the group Go, 
thereby singling out the second orbit R 2 and its 
stabilizer S~; continue thus until all the points of R 
are crossed off. This method of space-group-orbit 
splitting is hereafter referred to as the SOS method. 

The splitting of high-symmetry space-group orbits 
provides full symmetry-related information on the 
structure of the low-symmetry Go phase. For 
example, let us consider a commensurate phase tran- 
sition Fd-3m---,C2/m with quadrupling of the 
primitive-cell volume (the low-symmetry phase C2/m 
is induced by the six-dimensional irreducible repre- 
sentation )(3 or X4 of the group Fd3m).t As a result 

* Different points of an orbit generally have different stabilizers. 
However, these are conjugate and, consequently, isomorphic 
groups, therefore, we denote them by the same symbol (S or S5). 

t Note that we use one distinct subgroup of type C2/m out of 
the set of the several different subgroups of this type (see 
Appendix). 

of this transition, the orbit R = 16(d) with the stabi- 
lizer S = 3m is split as follows: 

2(1):2/m + 1(2):]-+ l(2):m + 1(2):2 + 2(4):1. (1.3) 

Addition in this formula signifies union of the sets 
R~. The number before the round bracket indicates 
the number of the orbits R~ of the same type. The 
brackets enclose multiplicity of the orbit R~ referring 
to the primitive cell of the C2/m phase. After the 
brackets, the stabilizers SD of the orbits are given. 

Thus, the atoms occupying the position 16(d) of 
the group Fd3m become, as a result of the phase 
transition, physically unequivalent - they divide into 
seven different types. Such information may be 
useful when the electron spin resonance and nuclear 
magnetic resonance experimental data are examined 
and also when the low-symmetry structure is refined 
with the aid of X-ray, neutron and other methods. 
The splitting of the orbits of the group G as the 
result of the phase transition G---,Gz~ also permits 
one to obtain a symmetry-allowed set of atomic 
displacements that characterizes the structure of the 
low-symmetry Go phase (see § 3). 

The SOS method and the COP method are equiva- 
lent in the geometrical sense and, broadly speaking, 
correspond to each other as methods of examining a 
periodic function in coordinate space and in Fourier 
space, respectively. However, near the transition 
point, the situation changes radically: the COP 
method permits some additional information on the 
structure of a low-symmetry phase to be obtained. 
Indeed, the Landau theory proves that, in the 
second-order phase transition, the loss of stability of 
a crystal structure is associated with the appearance 
of an order parameter Co corresponding to a single 
(critical) irreducible representation 1"o. There is full 
accord between this result and the concept of the soft 
mode. The 1-'o provides the main contribution to the 
function 6p(r) and, therefore, to the alteration in the 
crystal structure. 

The physical nature of the emergence of the non- 
critical (secondary) order parameter C/(j;~0) con- 
nected with the critical (primary) parameter Co is 
related to the nonlinear interactions between various 
degrees of freedom in a crystal. For this reason, near 
the phase transition point, the noncritical parameters 
are of a higher order of smallness in comparison with 
the critical ones. It may be deduced from the general 
principles of the Landau theory that, in such a case, 
the values of the critical and noncritical order 
parameters (Co = ICol, Cj= lej]) are proportional to 
different powers of 0 = I(T- Tc)/Tcl: 

Co "" 0 ~/2, Cj = 0 m/2 (j ;~ 0). (1.4) 

Here, m is the least direct symmetrized power of the 
critical IR 1-'o that contains the noncritical IR Fj and 
Tc is the temperature of the phase transition (in K) 
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(Sakhnenko, Talanov & Chechin, 1986; Chechin, 
Ivanova & Sakhnenko, 1989). Thus, in the vicinity of 
the phase-transition point, there are essential and 
nonessential atomic displacements and this feature of 
the crystal structure leads to a variety of interesting 
crystallographic effects that show up in low- 
symmetry phases (Chechin, Ipatova & Sakhnenko, 
1989; Veligonenko, Krivtsova & Chechin, 1989). 

2. A simplest example of specific features that 
characterize the low-symmetry phase near the 

phase-transition point 

In the present work, we consider the low-symmetry 
structure for the phase transition of the displacement 
type only. The occurrence of specific structural 
features near the transition point may be illustrated 
by the simplest example of a phase transition, P 1-, 
P1, between the crystal phases G = P1  and Go = P 1, 
without enlargement of the primitive cell. Such tran- 
sitions are induced by irreducible representations 
with the wave vector K = 0. The group G = P 1 has 
two IRs with K = 0 :F1 and F2, both of which are 
one-dimensional; FI being even and F2 odd with 
respect to inversion. The representation F2 is a 
critical IR that induces the transition P 1-, P1 and the 
change of the density function 6p2(r) = a~p2(r) corre- 
sponds to it. This function is odd with respect 
to the inversion vanishing as a result of the phase 
transition. Evidently, this expression does not pro- 
vide the most general form of the density function 
but it may be supplemented with the contribution 
t~pl(r) = bq~l(r), corresponding to the identical IR El, 
which, in this case, is noncritical. Thus, we have 

8p(r) = 3p2(r) + 8p~(r) = a~o2(r) + b~o~(r), (2.1) 

where qh and ~02 are the basis functions of the 
representations F1 and F2, respectively. This expres- 
sion for 6p(r) that corresponds to the complete 
condensate [see (1.1)] is, in this case, nothing other 
than a representation of an arbitrary function in the 
form of symmetric and antisymmetric parts, each of 
which is transformed according to one of the IRs of 
the group that consists of the identity element and 
the inversion: 

6p(r)=[rp(r)- 3p(-r)]/2 + [ r p ( r ) +  t~p(-r)]/2. (2.2) 

Near the phase-transition point T = To, the terms in 
(2.1) differ essentially in their orders of magnitude, 

6p2 > >  6pl. (2.3) 

Indeed, from the phenomenological theory (Sakh- 
nenko, Talanov & Chechin, 1986; Chechin, Ivanova 
& Sakhnenko, 1989), it follows that the emergence of 
the noncritical order parameter b is due to its inter- 
action with the critical parameter a. This interaction 
is described in the Landau potential by a mixed 

invariant of the type I =  a2b (since in this case 
F2 x / ' 2  = FI). Seeing that, according to the Landau 
theory, a -- T -  Tel i/2, we have b -- a 2 = 
IT-Tc~<<a. Making use of the validity of (2.3) 
near the transition point, we obtain, from (2.1), 

~;P - &P2. (2.4) 

In this approximation, the density function p = Po + 
6p of the low-symmetry phase possesses additional 
symmetry: it is odd (antisymmetric) with respect to 
the inversion that has vanished in consequence of the 
phase transition. Inclusion of the second term in 
(2.1) gives rise to a quite insignificant contribution, 
which grows as the temperature changes away from 
the transition point, so that the function p(r) is no 
longer definitely even with respect to the inversion. 

We illustrate this with an example of a phase 
transition for a one-dimensional chain, whose primi- 
tive cell contains one 'heavy' atom of type M and 
two 'light' atoms of type m (see Fig. 1). Consider 
displacements of the light atoms, for which purpose 
corresponding basis functions of the F2 and F~ IR 
are constructed. It is easy to see that they have the 
form ~2 = [~] and ql = (~o), where a and fl are the 
arbitrary parameters determining displacements of 
the atoms from their equilibrium positions in the P1  
phase. So as not to complicate the notation, these 
basis functions may conveniently be normalized as 
follows: ~p2=(1), ~Pl = ( J l ) .  Then, from (2.1), we 
have 

t~p = 6p2 + t~p, = [g] + [ 66] = [a+~]. (2.5) 

As is evident from (2.5), the critical displacements 
of two light atoms located in the primitive cell of the 
low-symmetry phase are identical (Fig. l b), whereas 
the noncritical ones are equal in value but opposite 
in direction (Fig. l c). As regards the condensate, the 
displacements of the atoms in question, different in 
value, correspond to it. Thus, near the transition 
point, a pattern of atomic displacements will be 
observed that corresponds to Fig. l(b), while away 
from it a pattern as shown in Fig. l(d) will be 
observed. 

Note that the two light atoms of the primitive cell 
of the one-dimensional crystal belong to one and the 

(a) • • • • 

M m m M 

• • • • • • 

(b) • ~ ~ • ~ ~ • o - . , -  e - - . . .  • 

(c) • ,,,0, ,,,,-. • e,.,. ,..o • . 0 ,  ~e, • 

( d )  • ~ . , , , .  • ~ ~ e,,,. • - - e . .  • 

Fig. I. Displacement structure corresponding to the phase transi- 
tion PT--, Pl in the one-dimensional crystal. 
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Table 1. Structure of the low-symmetry phase for the displacement-type transition Fd3m--, C2/m (V'/V4) induced 
by the IR X3 or the IR X4 of the Fd3m group for the orbit 16 (d) 

The R~ orbits and their stabilizers S~ /~o:m R~:2 /~o:l R~:I 
Starting points of the R~ orbits (1/8,5/8,5/8) (1/8,13/8,5/8) (5/8,1/8,5/8) (13/8,1/8,5/8) 
Symmetry-permitted atomic displacements (X, Y, Y) (0, - Z,Z) (X~, Y~,Z~) (X2, Y2,Z2) 
A(XI) ( -2a l ,a l  +a'l ,al  +a 'O (O,-al  + a ' t , a l - a ' O  ( a l + b ' l , - a l - b l , a ' l  +bl)  (--al +b ' l , a l - -b l , - -a ' l  +bO 
A(X2) (2a2,a2,a2) (0,  - a2,a2) ( --  a2, --  a2,0) (a2,a2,0) 
A(X3) (2a3,a3,a3) (0, - a3,a3) (a3,a3 + b3,b3) ( -  a3, - a3 + b3,b3) 
A(X4) ( --  2a4,a4 + b4,a4 + b4) (0, - a4 + ba,a4 - b4) ( - a4,a4, - b4) (a4, - a4,b4) 

same orbit of the group G = P1 of the original phase 
(they are interconnected via inversion), but to differ- 
ent orbits R~o and R 2 of the low-symmetry phase 
with GD = P 1. Therefore, between the displacements 
of the atoms that belong to different orbits of a 
low-symmetry phase, some numerical relationships 
can exist, which in this, the simplest, case are reduced 
to equality of atomic displacements for two orbits 
R~ and R 2. These relationships cannot be accounted 
for by purely crystallographic (symmetry-related) 
considerations,* rather they follow from the applica- 
bility, near the phase-transition point, of Landau's 
concept of one irreducible representation. In the 
general case, this concept may give rise to an inter- 
esting picture of atomic displacements, in which 
a non-symmetry-related relationship would be 
observed in both the magnitudes and the directions 
of these. 

3. Structure of the low-symmetry phase near the 
transition point 

Let us now consider an example that would allow all 
geometry effects to be illustrated following from the 
concept of one critical irreducible representation. 
The phase transition G = Fd-3m.-,Gz)= C2/m (V' /V 
= 4), which is considered in detail in the Appendix, 
is induced by one of two six-dimensional IRs )(3 or 
X4 belonging to the star of the vector Kl0 = ½(hi + b2) 
of the original space group, where b~ and b2 are the 
basis vectors of the reciprocal lattice. Consider dis- 
placements of the atoms that correspond to the orbit 
16(d) of the group Fd-3m (such a regular system of 
points is occupied by ions in, for instance, spinel- 
type crystals). 

A scheme to split the orbit 16(d) for the Fd3m---, 
C2/m phase transition was given earlier [(1.3)]. It 
follows from this scheme that the orbit in question is 
split into seven orbits R~ of the group C2/m. Note 
that, in this case, the list of stabilizers S~ of those 
orbits (2/m, 1, m, 2, 1) comprises all subgroups of the 
crystal class of the group C2/m. The atoms that 
correspond to the first three orbits in (1.3) cannot be 

* In the example under consideration, the atoms in the low- 
symmetry phase with the space group Go = P I will have different 
displacements regardless of the difference between the phase- 
transition temperature and the temperature at which the structure 
of  this phase is observed. 

displaced from their equilibrium positions in the 
original Fd-3m phase, since their stabilizers contain 
inversions. Nonzero atomic displacements for four 
other orbits are given in Table 1, which presents all 
necessary information on the structure of the low- 
symmetry C2/m phase (see Appendix). Row 1 shows 
the symbols for stabilizers S~ of the orbits R~. Row 
2 shows the coordinates of the starting points of 
these orbits referred to an oblique-angle basis of the 
primitive cell of group Fd3m. Row 3 shows the most 
general pattern of atomic displacements obtained 
by means of the SOS method, determined by their 
Cartesian coordinates. Rows 4, 5, 6 and 7 show the 
displacements A(Xi) corresponding to the IRs X1, Xz, 
)(3 and X4, respectively. 

The atomic displacements in Table 1 correspond 
to a quite definite domain of the low-symmetry C2/m 
phase (see Appendix). This domain is singled out by 
the stationary vector (a,a,a,a,b,b) of the critical IR 
X3 or by the stationary vector (a,a,a,a,o,o) of the 
critical IR X4 and its twofold axis is in the direction 
[011]. Therefore, the displacements obtained by the 
SOS method of the starting atoms that correspond to 
the orbits with the stabilizers 2 and m and to two 
orbits with S ~ =  1 have the forms (0 , -Z,Z) ,  
(X,Y,Y), (X1,YI,Z1), and ( X 2 , Y 2 , Z 2 )  , respectively. 
Hence, the structure of the atomic displacements 
associated with the 16(d) orbit depends, in the most 
general case, on nine arbitrary parameters: 

X, Y, Z, X~, Y~, Z1, X2, Y2, Z2. (3.1) 

According to Sakhnenko, Talanov & Chechin, 
(1986) and Chechin, Ivanova & Sakhnenko (1989), 
the complete condensate for the phase of the space 
group Gn= C2/m (V ' /V= 4) (see Appendix) con- 
tains the following IRs corresponding to the points F 
and X only of the Brillouin zone: Fl, /"5, / '7 , /9 ,  Xl, 
X2, X3, X4. A contribution to the displacements of 
the atom occupying the orbit R = 16(d) of the group 
G = Fd-3m is made only by those IRs that enter into 
the mechanical representation corresponding to this 
orbit. For the case in hand, it is the four IRs of the 
star of the vector X, i.e. X~, X2, X3, X4. The contri- 
bution A(Xi) made by the IR Xi to 6p(r) is a particu- 
lar linear combination of its basis functions with 
coefficients determined for this IR by the stationary 
vector corresponding to the given GD phase. 
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Making use of the basis functions of the IRs X; for 
the group G = F d 3 m  obtained in the paper 
by Sakhnenko, Talanov, Chechin & Ulyanova 
(1983) and of the stationary vectors obtained by 
Sakhnenko, Talanov & Chechin (1986), one may 
readily arrive at the explicit forms of the contri- 
butions A(Xi) to the set of displacements of atoms 
occupying the orbit 16(d) that are listed in Table 1. 
The complete set of atomic displacements is a sum of 
all four contributions; it depends on nine arbitrary 
parameters (al, bl, a'l, b'l, a2, a3, b3, a4, b4) with the 
representations X~, )(2, X3 and X4 providing, respec- 
tively, 4, 1, 2 and 2 parameters. 

As already noted, in the case of the Fd3m---, C2 /m 
transition, there may, in principle, be two different 
critical IRs, i.e. either )(3 or X4. On the other hand, 
Table 1 shows that these critical IRs give rise to 
different types of atomic displacements. Since, near 
the phase-transition point, the critical displacements 
are those of the greatest order of magnitude [see 
(1.4)], there exists a possibility of determining from 
the X-ray and neutron diffraction experiments the 
true critical (primary) parameter for a particular 
phase transition in a given substance. 

For both variants of the critical IR, the corre- 
sponding set A(Xi) of atomic displacements in a 
low-symmetry phase is determined by two arbitrary 
parameters. This means that, near the transition 
point, among the nine parameters [(3.1)] determined 
from purely crystallographic considerations, seven 
additional relationships exist. If the IR X3 is critical, 
the following temperature dependences of the differ- 
ent contributions A(Xi) to the structure under con- 
sideration can be obtained from (1.4): 

A(X3) ~--- 01/2; A(X'I).-.-, 01; A(X'2) , A(X4) = 03/2. 
(3.2) 

For 0 << 1, i.e. in the vicinity of the phase-transition 
point, critical displacements (corresponding to IR 
X3) are the greatest in magnitude; they make the 
main contribution to the crystal structure of the 
low-symmetry phase emerging upon the transition. 
When the contribution from noncritical displacement 
is entirely disregarded (i.e. setting a~ = b~ = a'~ = b't 
= a2 = a4 = b4 = 0), we obtain quite definite rela- 
tionships between the Cartesian coordinates of the 
atomic displacements (X, Y, Z,  Xt,  Yl, Zt,)(2, Yz, Z2). 
For example, comparison of the form of the 
symmetry-allowed displacement of the starting atom 
of the orbit R~ (X, Y, Y) with the critical displacement 
o f  that atom (2a3,a3,a3) listed in Table 1 clearly leads 
to X = 2 Y. The full list of such relationships for the 
case when the IR )(3 is critical can be found in this 
way: 

X = 2 Y; YI = X~ + Z~; Y2 = "¥2 nt- Z2;  

Z = Y = Xl = -)(2; ZI = Z2. (3.3) 

Analogously, with the IR X4 being critical, we have 

Y~=-X~;  Y 2 = - X 2 ;  X ~ = - X 2 ;  Z I = - Z 2 ;  

X 2 + Z 2 = Y ;  Y I + Z I = Z ;  X=2X~. (3.4) 

Among these relationships, there are some that 
limit the directions of possible atomic displacements, 
and also some that give rise to additional numerical 
relationships between displacements of the atoms 
belonging to different orbits of the low-symmetry 
C2/m phase. Let us examine this question in greater 
detail for critical displacements A(X3) corresponding 
to the IR )(3. The atom corresponding to the orbit 
/Po with the stabilizer m has two degrees of freedom 
[its Cartesian coordinates are (X, Y, Y)] and is thus 
displaced in the plane defined by the stabilizer. On 
the other hand, its critical displacements A(X3) have 
the form (2a3,as,a3) , depending solely on one arbi- 
trary parameter a3. Evidently, this displacement 
occurs in the plane m, but corresponds to the quite 
definite direction [211]. Crucial here is the fact that 
this direction is not symmetry determined either in 
the group Fd-3m or in any of the 230 space groups. 
(In the original cubic lattice, this is the direction 
from a vertex of the cube to the center of the 
opposite face.) Consequently, a displacement in such 
a direction cannot, in principle, be obtained from 
symmetry considerations. 

Analogously, the atoms of the orbits R 6 and R 7 
with the stabilizer 1 have not three but only two 
critical degrees of freedom, thus shifting in the fixed 
plane (1]-1). Restrictions leading to these effects arise 
from the numerical relationships between the degrees 
of freedom that correspond to one and the same 
atom. For the critical IR X3, these restrictions are: 

X = 2 Y ,  Y~=X~+ZI ,  Y2=X2+Z2; (3.5) 

while, for the critical IR X4, they have the form 

Yl = - X~, Y2 = - X2. (3.6) 

The remaining relationships between free param- 
eters lead to certain numerical relationships between 
displacements of the atoms of differerit orbits of the 
low-symmetry C2/m group. For the IR )(3 they have 
the form 

Z = Y= X~ = -X2, Z~ = Z2; (3.7) 

for the IR X4 they have the form 

X, = - X2, Z~ = - Z2, X2 + Z2 = Y, 

Yl + Z) = Z, X = 2Xl. (3.8) 

As the temperature is changed away from the 
phase-transition point, the role of noncritical dis- 
placements gradually increases and some of the 
above-mentioned additional relationships are no 
longer valid (see § 1 of the present work). According 
to (3.2), first to appear in the experiment after the 



G. M. CHECHIN, E. A. IPATOVA AND V. P. SAKHNENKO 829 

Table 2. Displacements o f  the atoms that occupy the 3(c) orbit of  the Pm-3m group as a result o f  the phase 
transition Pm3m--, Amm2 

Atomic coordinates { 

Atomic displacements obtained by the SOS method { 

Atomic displacements obtained by the COP method 

Experimentally determined displacements of the atoms 
in BaTiO3 (A.) 

Experimentally determined displacements of the atoms 
in KNbO3 (A) 

Stabilizers 
Type of basis mm2 m 

a (1/2,1/2.0) (0,1/2,1/2) 
A (0,0,1/2) (1/2,3/4,1/4) 
a (xl,xl,O) (x2,y2,0) 
A (o,o,z,) (o,r~,z9 
a (a + a' ,a + a',O) (b,a - a',O) 
A (0,0,A + A') [0,(A - a -  A')/2,(A + B- A')/2] 

A (0,0,0.06) (0,0.02,0.07) 
A (0,0,0.120)* (0,0.022,0.200)* 
A (0,0,0.208)I" (0,0.014,0.196)'[ 

* Katz & Megaw (1967). 
i" Hewat (1973). 

critical parameters IR X3) will be those noncritical 
parameters that correspond to IR X~. (In Table 1, 
the free parameters that correspond to different IRs 
are designated by different letters with an index 
which is the ordinal number of the IR of the star of 
the vector Klo). 

The complete condensate A = A(XO + A(X2) + 
A(X3)+A(X4) of critical and noncritical dis- 
placements is like the set of the displacements 
obtained by the orbit-splitting method (row 3 of 
Table 1), determined by nine arbitrary parameters al, 
bl, .... Note that this condensate does not depend on 
which IR - )(3 or X4 - is critical. One may easily see 
that A contains the same displacements as row 3, the 
only difference being that they are represented as a 
sum of contributions from individual IRs of the 
symmetry group of the original phase (expanded in 
the basis functions of those IRs). As already noted, 
such a representation of atomic displacements is 
analogous to the representation of a periodic func- 
tion as a Fourier series. The use of the concept of 
one irreducible representation is equivalent in this 
case to taking into account, in the Fourier series of 
several harmonics, only those of which the ampli- 
tudes are the largest and are determinative for the 
physical phenomenon under consideration. Note that 
all the above-described specificities in the structure of 
a low-symmetry phase can be observed experimen- 
tally near the phase-transition point. 

4. Comparison of the theoretical results with 
experimental data 

The temperature vicinity of the transition point is of 
special interest for an investigation of the physical 
nature of a transition. However, little experimental 
data can be found in the literature on the low- 
symmetry phase structure in this region. The dis- 
placement-type transition Pm3m---,Amm2 without 
enlargement of the primitive unit cell in KNbO3 and 
BaTiO3 crystals is an example for which such data 
are available. This transition is induced by the 

critical IR r~o, which is the vectorial representation 
of the group Pm-3m (Kovalev, 1961). In a KNbO3 
crystal, the atoms of potassium, niobium and oxygen 
occupy in this perovskite crystal the orbits l(a), l(b) 
and 3(c), respectively, of the original space group. 
Let us analyze the structure of the low-symmetry 
Amm2 phase that arises from the orbit 3(c). The 
primitive cell of this phase, like the cell of the 
original phase, contains three O atoms with coordi- 
nates (in fractions of the cubic-cell edges) (~,½,0), 
(~,0,~), (0,~,~). In addition to the identity element, the 
group Go = Amm2 contains two sets of mirror planes 
normal to the directions [001] and [ 1]0], respectively, 
and twofold axes parallel to [110]. The periods AI, 
A2 and A 3 of the face-centered cell of the low- 
symmetry phase (whose volume is twice as large as 
that of the primitive cell) are connected with the 
periods al, a2, a3 of the cubic cell of the original 
Pm3m phase, in the following manner: 

A~ = a3; A2 = + a~ - a2, A 3 = a~ + a2. 

Hereafter, we differentiate between the atomic 
coordinates in the a basis and those in the A basis, 
depending on whether they are expressed in the basi ~ 
of the original Pm3m phase or in that of the low- 
symmetry Amm2 phase. For example, the coordi- 
nates of the oxygen atoms have, in the A basis, the 
form (0,0,½); ~l M~. ,_~ ! !~ _ ~! 3 !x ~,2,4,41, ~ ,2 , -  4,4} = ~,2,4,41. 

As a result ot the phase transition Pm3m---, Atom2, 
the orbit 3(c) of the group G = Pm3m splits into two 
orbits R~ and R 2 of the group GD = Amm2 by the 
scheme 

1(1): mm2 + 1(2): m (4.1) 

It may be seen from this scheme that the low- 
symmetry phase structure found by the SOS method 
is characterized by three degrees of freedom, of 
which one corresponds to the orbit R 1 and the other 
two to the orbit R 2. In Table 2, the arbitrary param- 
eters for the orbit R~ are designated Xl in the a basis 
and by Z~ in the A basis, while those for the orbit R e 
are designated (x2,y2) and (Y2,Z2), respectively. 
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The low-symmetry Amm2 phase structure can also 
be found by the COP method. Besides the critical IR 
~'10, its complete condensate contains the representa- 
tions ~'1, Zs, ~'7 and ~'8 (Ivanova, Kesoretskikh, 
Sakhnenko & Chechin, 1986). Only two of these IRs 
enter into the mechanical representation associated 
with the 3(c) orbit, namely, the critical IR r~o (twice) 
and the noncritical IR r8 (once). It is these IRs that 
make a contribution to the low-symmetry phase 
structure for the displacement-type transition Pm3m 
~ A m m 2 .  By calculating the basis functions of these 
two three-dimensional representations and taking 
into account the form of the corresponding station- 
ary vectors - (a,a,o) for the IR r~o and ( a ' , -  a',o) for 
the IR ~'8 - the critical and noncritical displacements 
of the atoms are found for the orbit 3(c). The 
complete condensate of these displacements, 
obtained by the COP method, is given in row 4 of 
Table 2. The parameters a and b are critical, while 
the parameter a' is noncritical. In the case where 
only the critical atomic displacements are considered 
(setting a ' =  o), one connection is revealed between 
the displacements of the atoms of the two different 
orbits of the Amm2 group, to which the stabilizers 
mm2 and m correspond; namely, Y2 + Z2 = Z1. 

It should be noted that the transitions in KNbO3 
and BaTiO3 are of the first order. Therefore, esti- 
mation of the smallness of the noncritical parameters 
using the formula a ' =  I(T-Tc)/Tcl m/2 is not a cor- 
rect procedure, since this formula was obtained for 
the second-order phase transitions. Let us analyze 
the experimental data on BaTiO3 (Shirane, Danner 
& Pepinsky, 1957) and KNbO3 (Katz & Megaw, 
1967) listed in Table 2. These data show that the 
value of the displacement (Y) of the O atom of the 
orbit R 2 along the axis Y is much smaller than 
the displacements of O atoms along the axis Z 
(Y2 << Z1, Z2); it lies near the limits of experimental 
accuracy given in the above-mentioned references. 
Hence, the relationship Y2 + Z2 = Z1 derived above 
may be reduced to the form Z~ = Z2. As can be seen 
from Table 2, the latter relationship is fulfilled rather 
well for BaTiO3 and also in regard to KNbO3 
(Hewat, 1973); it is, however, in marked dis- 
agreement with the results obtained for the latter 
compound in an earlier work (Katz & Megaw, 1967). 
Note that the relationship ZI =Z2 for the dis- 
placements of O atoms reflects a weak distortion of 
the oxygen octahedron upon a phase transition in 
the crystals under consideration. 

In conclusion, we wish to emphasize that the 
relationships of the (3.3), (3.4) type between the 
displacements of the atoms belonging to different 
orbits of the space group of the low-symmetry phase 
are of a general character and must be fulfilled near 
Tc for most crystals, even though they cannot be 
deduced from purely crystallographic considerations. 

The study of the structures of low-symmetry phases 
in the immediate vicinity of the phase-transition 
point is of particular importance for the verification 
of the above relationships containing valuable 
information as to the mechanism and character of a 
given phase transition. 

A P P E N D I X  

Second-order phase transitions in crystals of the 
space group G = Fd3m may generate many different 
low-symmetry phases belonging to the group GD = 
C2/m. They differ in the multiplicity of the primitive- 
cell volume as well as in the way they are positioned 
in the parent group G = Fd-3m. The Bravais lattice of 
the group G = Fd3m is defined by three basis vectors 

11 =(~,0,1), a3--(~,~,0), determined by al = (0,~,~), a2 
their Cartesian coordinates. These vectors determine 
the primitive cell of volume V of the original group 
G. According to Sakhnenko, Talanov & Chechin, 
(1986) and Chechin, Ivanova & Sakhnenko (1989), 
the phase transition G = Fd3m--,  Go = C2/m ( V ' / V  
= 4) may be induced either by the IR X3 - stationary 
vector (a,a,a,a,b,b) - or by the IR X4 - stationary 
vector (a,a,a,a,o,o). Let us consider the former case. 
By singling out the matrices Mi of this representation 
that leave the vector C = (a,a,a,a,b,b) invariant, i.e. 
satisfy the condition M,.C = C, and then the elements 
of the original group G = Fd3m that correspond to 
those matrices, we obtain all the symmetry elements 
surviving the phase transition. The set of these 
elements comprises 

(a) the operations of point symmetry, 

1, 2[011], 1, m[0il]; (A1) 

(b) the translations, which determine the edges of 
the Bravais cell of the low-symmetry phase, 

A l = - a 1 + a 2 + a 3 ,  A2=2a~, A3=2a2-2a3 ,  

(A2) 

and the translation ~(A2 + A3) = a~ + a2 - a3 corre- 
sponding to the A-face center of this cell. 

The operations 2 and ]- from (A1) are 
accompanied by the same translation part ao = 
~(a~ + a2 + a3). The shift of origin by the vector 

R = {(a, + a2 + a3) {a3 )  

makes translation parts corresponding to all opera- 
tions (A1) equal to zero. The formulae (A1)-(A3) 
define the subgroup G o = A 2 / m  ( V ' / V = 4 ) C G =  
Fd3m precisely. All calculations in the present paper 
were made for such an A-centered type of group GD. 
But instead of symbol A2/m, we prefer to use the 
standard symbol C2/m for this space group. 

Let us consider the splitting scheme of the orbit R 
= 16(d) of the group Fd3m for this subgroup. This 
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orbit can be defined by the set of points 

r1=(5/8,5/8,5/8), 

r3=(5/8,13/8,5/8), 

r5=(1/8,5/8,5/8), 

r7=(1/8,13/8,5/8), 

r9=(5/8,1/8,5/8), 

r11=(5/8,9/8,5/8), 

r 2 = ( 1 3 / 8 , 5 / 8 , 5 / 8 ) ,  

r4 = (13/8,13/8,5/8), 

r 6 = (9/8,5/8,5/8), 

r8 = (9/8,13/8,5/8), 

rl0 = (13/8,1/8,5/8), 

rl 2 = (13/8 ,9 /8 ,5 /8) ,  

(A4) 

r13=(5/8,5/8,1/8), r14=(13/8,5/8,1/8), 

r15 = (5/8,13/8,1/8), r l6  = (13/8,13/8,1/8). 

These points are given not by their Cartesian coordi- 
nates but rather by contravariant coordinates rela- 
tive to the oblique-angle system of reference 
( a l , a 2 , a 3 ) ,  i.e. if r =/xla~ + #.2a2 +/.t3a3, then we 
indicate three numbers (/z~,/z2,/z3). Acting on the 
points (A4) with the operations of the group Go = 
C2/m (V ' /V= 4), we obtain the following splitting: 

R g = {l[2/m}, R 2 = {212/m}, R 3 = {3,411-}, 

R4o = {5,6[m}, R~ = {7,812 }, (,45) 

R6={9,16,11,13 1}, R7={10,15,12,14 1}. 

The numbers of the points of the R~ orbit from the 
set (A4) and the stabilizer that corresponds to its 
starting point are given for each R~ in the braces. 

The splitting (A5) generates the scheme (1.3). Note 
that, for conjugate subgroups G~ = go iGDgo 
(go E G), which are the symmetry groups of different 
domains of the Go phase, the same splitting scheme 
corresponds to them, in spite of the difference in 

correspondence between the points of the orbit R 
and the orbits R~. 
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Abstract 

Superspace groups introduced for usual modulated 
structures have recently been applied to the analysis 
of composite crystals. This review describes the 
method of composite-crystal analysis based on the 
superspace group. This method is efficient for the 
analysis of any (incommensurate or commensurate) 
composite crystals. The method is analogous to that 
for the modulated structure in many respects. The 
description of composite crystals in superspace, 
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determination of their superspace groups and unified 
setting of the unit vectors are mentioned. Two pos- 
sible approximations and a relation between the 
superspace and space groups for commensurate com- 
posite crystals are discussed. Space groups of 
chimney-ladder structures with different periods are 
derived from a single superspace group by the appli- 
cation of this relation. Possible superspace groups 
for known composite structures are deduced from 
the space groups of average substructures. Finally, 
the refinement method is discussed. 
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